python包管理工具:Conda和pip比较
有网友碰到这样的问题“python包管理工具:Conda和pip比较”。小编为您整理了以下解决方案,希望对您有帮助:
解决方案1:
Python的世界里,有两个重要的包管理工具:Conda和pip。尽管两者常常被混淆,它们各自有着独特的定位。pip,由Python Packaging Authority推荐,主要用于从Python Package Index下载并安装Python软件,如wheels或源代码分发。这些软件可能需要额外的编译环境,特别是对于非Python库。相比之下,Conda作为跨平台的包和环境管理器,其优势在于可以安装Anaconda repository和Anaconda Cloud上的conda包,这些包通常是二进制形式,包含Python、C/C++、R等语言的软件。它的一大特点是能够创建隔离环境,这对于数据科学工具的协作环境管理极其有用,因为它可以避免依赖冲突。
安装Python时,pip通常需要先安装解释器,而Conda可以直接处理。pip依赖于virtualenv或venv等工具来创建环境,依赖关系的处理方式是递归串行,可能导致因依赖不兼容而破坏环境。相反,Conda在安装时会确保所有依赖项满足,虽然可能增加一些安装时间,但能保证环境的稳定性。
尽管有类似之处,Conda与pip的结合在数据科学环境中变得常见,主要是因为某些包仅pip提供,比如Anaconda的1500多个软件包,包括热门的机器学习框架。然而,PyPI上的软件包库量级更大,达到150,000+,这意味着有时需要的包可能在Conda中找不到,而pip却可以提供。在选择使用时,要根据具体需求权衡这两个工具的利弊。