请把证三角形全等的过程写出来好吗?越详细越好!谢谢啦!
发布网友
发布时间:2022-04-24 14:45
我来回答
共1个回答
热心网友
时间:2023-10-17 02:02
判定公理
1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。 2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。 3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。 4、有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”) 5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。 注意:在全等的判定中,没有AAA(角角角)和SSA(边边角)(特例:直角三角形为HL,属于SSA),这两种情况都不能唯一确定三角形的形状。 A是英文角的缩写(angle),S是英文边的缩写(side)。 H是英文斜边的缩写(Hypotenuse),L是英文直角边的缩写(leg)。 6.三条中线(或高、角平分线)分别对应相等的两个三角形全等。
编辑本段性质
三角形全等的条件: 1、全等三角形的对应角相等。 2、全等三角形的对应边相等 3、全等三角形的对应顶点相等。 4、全等三角形的对应边上的高对应相等。 5、全等三角形的对应角平分线相等。 6、全等三角形的对应中线相等。 7、全等三角形面积相等。 8、全等三角形周长相等。 9、全等三角形可以完全重合。
编辑本段推论
要验证全等三角形,不需验证所有边及所有角也对应地相同。以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定: S.S.S. (Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。 S.A.S. (Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。 A.S.A. (Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。 A.A.S. (Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。 R.H.S. / H.L. (Right Angle-Hypotenuse-Side)(直角、斜边、边):各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。 但并非运用任何三个相等的部分便能判定三角形是否全等。以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形: A.A.A. (Angle-Angle-Angle)(角、角、角):各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。 A.S.S. (Angle-Side-Side)(角、边、边):各三角形的其中一个角都相等,且其余的两条边(没有夹着该角),但这并不能判定全等三角形,除非是直角三角形。但若是直角三角形的话,应以R.H.S.来判定。
编辑本段运用
1、性质中三角形全等是条件,结论是对应角、对应边相等。 而全等的判定却刚好相反。 2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。 3,当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。 4、用在实际中,一般我们用全等三角形测相等的距离。以及相等的角,可以用于工业和军事。 5、三角形具有一定的稳定性,所以我们用这个原理来做脚手架及其他支撑物体。
编辑本段做题技巧
一般来说考试中线段和角相等需要证明全等。 因此我们可以来采取逆思维的方式。 来想要证全等,则需要什么条件 要证某某边等于某某边,那么首先要证明含有那两个边的三角形全等。 然后把所得的等式运用(AAS/ASA/SAS/SSS/HL)证明三角形全等。 有时还需要画辅助线帮助解题。 分析完毕以后要注意书写格式,在全等三角形中,如果格式不写好那么就容易出现看漏的现象。 例1、如图,已知CD⊥AB于D,BE⊥AC于E,△ABE≌△ACD,∠C= 20°,AB=10,AD= 4, G为AB延长线上一点.求∠EBG的度数和CE的长. 分析: (1)图中可分解出四组基本图形:有公共角的Rt△ACD和Rt△ABE;△ABE≌△ACD,△ABE的外角∠EBG或∠ABE的邻补角∠EBG. (2)利用全等三角形的对应角相等性质及外角或邻补角的知识,求得∠EBG等于160°. (3)利用全等三角形对应边相等的性质及等量减等量差相等的关系可得: CE=CA-AE=BA-AD=6. 解: ∵△ABE≌△ACD ∠C= 20°(已知) ∴∠ABE=∠C =20°(全等三角形的对应角相等) ∴∠EBG=180°-∠ABE =160°(邻补角的意义) ∵△ABE≌△ACD(已知) ∴AC=AB(全等三角形对应边相等) AE=AD(全等三角形对应边相等) ∴CE=CA-AE =BA-AD =6(等式性质)
编辑本段例题分析
例1: (2006·浙江金华) 如图1,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其它字母),使AC=BD,并给出证明. 你添加的条件是: . 证明: 分析: 要说明AC=BD,根据图形想到先说明△ABC≌△BAD,题目中已经知道∠1=∠2,AB=AB,只需一组对边相等或一组对角相等即可. 解:添加的条件是:BC=AD. 证明:在△ABC与△BAD中,∠1=∠2,AB=AB,∠A=∠A' ∴ △ABC≌△BAD(SAS). ∴ AC=BD. 小结:本题考查了全等三角形的判定和性质,答案不惟一,若按照以下方式之一来添加条件:①BC=AD,②∠C=∠D,③∠CAD=∠DBC,④∠CAB=∠DBA,都可得△CAB≌△DBA,从而有AC=BD. 二、综合开放型 例2:(2006·攀枝花)如图2,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明. 所添条件为_______________. 你得到的一对全等三角形是: △ ≌△ . 证明: 分析: 在已知条件中已有一组边相等,另外图形中还有一条公共边,因此再添这两边的夹角相等或另一组对边也相等即可得出全等三角形. 解:所添条件为CE=ED. 得到的一对全等三角形是△CAE≌△DAE. 证明:在△CAE和△DAE中,AC=AD,AE=AE,CE=DE, 所以 △CAE≌△DAE(SSS). 小结: 本题属于条件和结论同时开放的一道好题目,题目本身并不复杂,但开放程度较高,能激起同学们的发散思维,值得重视.
http://zhidao.baidu.com/question/265738833.html
http://ke.baidu.com/view/401.htm
http://zhidao.baidu.com/question/91971846.html